You are here: Home > About Us > Research References
Choose a sub category:
Knowledge Base


Genomix Nutrition SNP Definition
References


Methylation SNP References


MTHFR

  • Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt
    DS, Matthews RG, Rozen R (Jun 1994).“Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification”. Nature Genetics 7 (2): 195–200.
    doi:10.1038/ng0694-195.PMID 7920641.

  • “Entrez Gene: MTHFR methylene tetrahydrofolate reductase (NAD(P)
    H)”
    . Födinger M, Hörl WH, Sunder-Plassmann G (2000). “Molecular biology of 5,10-methylenetetrahydrofolate reductase”.JournalofNephrology13(1):20–33. PMID10720211.

  • Trimmer EE (2013).“Methylenetetrahydrofolate
    reductase: biochemical characterization and medical significance”. Current Pharmaceutical Design 19 (14): 2574–93.
    doi:10.2174/1381612811319140008. PMID 23116396.

  • Tran P, Leclerc D, Chan M, Pai A, Hiou-Tim F, Wu Q, Goyette
    P, Artigas C, Milos R, Rozen R (Sep 2002).“Multiple transcription start sites and alternative splicing in the methylenetetrahydrofolate reductase gene result in two enzyme isoforms”.MammalianGenome13(9):483–92.
    doi:10.1007/ s00335-002-2167-6 . PMID 12370778.

  • Matthews RG, Daubner SC (1982).“Modulation of methylenetetrahydrofolate reductase activity by S-adenosylmethionine and by dihydrofolate and its polyglutamateanalogues”.AdvancesinEnzymeRegulation20: 123–31. doi:10.1016/0065-2571(82)90012-7.PMID 7051769.

  • Yamada K, Strahler JR, Andrews PC, Matthews RG (Jul 2005). “Regulation of human methylenetetrahydrofolate reductase
    by phosphorylation”
    . Proceedings of the National Academy of Sciences of the United States of America 102 (30): 10454–9. doi:10.1073/pnas.0504786102. PMC 1180802. PMID 16024724.

  • Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt
    DS, Matthews RG, Rozen R (Aug 1994).“Human methylenetetrahydrofolate reductase: isolation of cDNA mapping and mutation identification”. Nature Genetics 7 (4): 551.
    doi:10.1038/ng0894-551a.PMID 7951330.

  • Sibani S, Christensen B, O’Ferrall E, Saadi I, Hiou-Tim F, Rosenblatt DS, Rozen R (2000).“Characterization of six novel mutations in the methylenetetrahydrofolate reductase (MTHFR) geneinpatientswithhomocystinuria”.HumanMutation15(3): 280–7. doi:10.1002/(SICI)1098-1004(200003)15:3<280::AID- HUMU9>3.0.CO;2-I .PMID 10679944.

  • Schneider JA, Rees DC, Liu YT, Clegg JB (May 1998). “Worldwide distribution of a common methylenetetrahydrofolate reductase
    mutation”
    . American Journal of Human Genetics 62 (5): 1258–60. doi:10.1086/301836. PMC 1377093. PMID 9545406.

  • Reilly R, McNulty H, Pentieva K, Strain JJ, Ward M (Feb 2014).“MTHFR 677TT genotype and disease risk: is there amodulatingroleforB-vitamins?”.TheProceedings of the Nutrition Society 73 (1): 47–56. doi:10.1017/S0029665113003613. PMID 24131523

• Yamada K, Chen Z, Rozen R, Matthews RG (Dec 2001). “Effects of common polymorphisms on the properties of recombinant human methylenetetrahydrofolate reductase” . Proceedings of the National Academy of Sciences of the United States of America 98 (26): 14853–8. doi:10.1073/pnas.261469998. PMC 64948.PMID 11742092.

Schwahn B, Rozen R (2001).“Polymorphisms in the methylenetetrahydrofolate reductase gene: clinical consequences”.AmericanJournalofPharmacogenomics1(3): 189–201. doi:10.2165/00129785-200101030-00004. PMID 12083967.

Bailey LB (Nov 2003).“Folate, methyl-related nutrients, alcohol, and the MTHFR 677C-->T polymorphism affect cancer risk: intake recommendations”. The Journal of Nutrition133 (11 Suppl 1): 3748S–3753S. PMID 14608109.

Wu X, Zhao L, Zhu H, He D,Tang W, Luo Y (Jul 2012). “Association between the MTHFR C677T polymorphism and recurrent pregnancy loss: a meta-analysis”. Genetic Testing and Molecular Biomarkers 16 (7): 806–11. doi:10.1089/gtmb.2011.0318. PMID 22313097. PMID 11502178.

• Schnell JR, Dyson HJ, Wright PE (2004).”Structure, dynamics, and catalytic function of dihydrofolate reductase”. Annu Rev Biophys Biomol Struct 33 (1): 119–40.doi:10.1146/annurev.biophys.33. PMID 15139807. • Crabtree MJ, Tatham AL, Hale AB, Alp NJ, Channon KM (2009). “Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways” . J. Biol. Chem. 284 (41): 28128–36.doi:10.1074/jbc. M109.041483 . PMID 19666465.

• Benkovic SJ, Fierke CA, Naylor AM (March 1988). “Insights into enzyme function from studies on mutants of dihydrofolate reductase”. Science 239 (4844): 1105–10. doi:10.1126/ science.3125607 . PMID 3125607.

• Huennekens FM (June 1996). “In search of dihydrofolate reductase” . Protein Sci. 5(6): 1201–8. doi:10.1002/ pro.5560050626 . PMID 8762155.

• Bailey SW, Ayling JE (2009). “The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake” . Proc. Natl. Acad. Sci. U.S.A. 106 (36): 15424–9. doi:10.1073/ pnas.0902072106 . PMID 19706381.

• Beierlein JM, Karri NG, Anderson AC (October 2010). “Targeted mutations of Bacillus anthracis dihydrofolate reductase condense complex structure− activity relationships” . J. Med. Chem. 53 (20): 7327–36. doi:10.1021/ jm100727t . PMID 20882962.


FOLR1

• Henderson GB (1990). “Folate-binding proteins”. Annu. Rev. Nutr. 10: 319–35. PMID 2166548.

• Kelemen LE (2006). “The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander?”. Int. J. Cancer 119 (2): 243–50. PMID 16453285.

• Ragoussis J, Senger G, Trowsdale J, Campbell IG (1992). “Genomic organization of the human folate receptor genes on chromosome 11q13”. Genomics 14 (2): 423–30. . PMID 1330883.

• Elwood PC (1989). “Molecular cloning and characterization of the human folate-binding protein cDNA from placenta and malignant tissue culture (KB) cells”. J. Biol. Chem. 264 (25): 14893–901. PMID 2768245.

• Sadasivan E, Rothenberg SP (1989). “Molecular cloning of the complementary DNA for a human folate binding protein”. Proc. Soc. Exp. Biol. Med. 189 (2): 240–4. PMID 3194438.

• Yan W, Ratnam M (1995). “Preferred sites of glycosylphosphatidylinositol modification in folate receptors and constraints in the primary structure of the hydrophobic portion of the signal”. Biochemistry 34 (44): 14594–600.. PMID7578066.

• Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K, et al. (1997). “Construction and characterization of a full length-enriched and a 5’-end- enriched cDNA library”. Gene 200 (1–2): 149–56. . PMID 9373149.


FOLR2

• Henderson GB (1990). “Folate-binding proteins.”. Annu. Rev. Nutr. 10: 319–35.. PMID 2166548.

Nishiyama M, Kato Y, Hashimoto M,Yukawa S, Omori K
(May 2000).“Apolipoprotein E, methylenetetrahydrofolate reductase (MTHFR) mutation and the risk of senile dementia- -an epidemiological study using the polymerase chain reaction(PCR)method”.JournalofEpidemiology/Japan Epidemiological Association 10 (3): 163–72.
doi:10.2188/ jea.10.163 . PMID 10860300.

Mischoulon D, Raab MF (2007). “The role of folate in depression and dementia” . The Journal of Clinical Psychiatry. 68 Suppl 10: 28–33. PMID 17900207.

Hua Y, Zhao H, Kong Y,Ye M (Aug 2011).“Association between the MTHFR gene and Alzheimer’s disease: a meta- analysis”.TheInternationalJournalofNeuroscience121(8): 462–71. doi:10.3109/00207454.2011.578778. PMID 21663380.

Papakostas, G. I.; Shelton, R. C.; Zajecka, J. M.; Bottiglieri,T; Roffman, J; Cassiello, C; Stahl, S. M.; Fava, M (2014).“Effect of adjunctive L-methylfolate 15 mg among inadequate responders to SSRIs in depressed patients who were stratified by biomarker levels and genotype: Results from a randomized clinicaltrial”.TheJournalofClinicalPsychiatry75(8):

855–63. doi:10.4088/JCP.13m08947. PMID 24813065. DHFR

• Chen MJ, Shimada T, Moulton AD, Cline A, Humphries RK, Maizel J,NienhuisAW(March1984). “Thefunctionalhumandihydrofolate reductase gene” . J. Biol. Chem. 259(6): 3933–43. PMID 6323448.

• Funanage VL, Myoda TT, Moses PA, Cowell HR (October
1984).
“Assignment of the human dihydrofolate reductase gene to the q11----q22 region of chromosome 5” . Mol. Cell. Biol. 4 (10): 2010–6. PMID 6504041.

• Osborne MJ, Schnell J, Benkovic SJ, Dyson HJ, Wright PE (August 2001). “Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism”. Biochemistry 40 (33): 9846–59.

  • Ragoussis J, Senger G, Trowsdale J, Campbell IG (1992). “Genomic organization of the human folate receptor genes on chromosome 11q13.”. Genomics 14 (2): 423–30. . PMID 1330883.

  • Freisheim JH, Price EM, Ratnam M (1990). “Folate coenzyme and antifolate transport proteins in normal and neoplastic cells.”. Adv. Enzyme Regul. 29: 13–26. PMID 2561247.

  • Ratnam M, Marquardt H, Duhring JL, Freisheim JH (1990). “Homologous membrane folate binding proteins in human placenta: cloning and sequence of a cDNA.”. Biochemistry 28 (20): 8249–54. PMID 2605182.

  • Shen F, Ross JF, Wang X, Ratnam M (1994). “Identification of a
    novel folate receptor, a truncated receptor, and receptor type beta in hematopoietic cells: cDNA cloning, expression, immunoreactivity, and tissue specificity.”.Biochemistry 33 (5): 1209–15. .
    PMID 8110752.

  • Page ST, Owen WC, Price K, Elwood PC (1993). “Expression of the human placental folate receptor transcript is regulated in human tissues. Organization and full nucleotide sequence of the gene.”. J. Mol. Biol. 229 (4): 1175–83. PMID 8445646.

  • Suzuki Y, Yoshitomo-Nakagawa K, Maruyama K; et al. (1997). “Construction and characterization of a full length-enriched and a 5’-end- enriched cDNA library.”. Gene 200 (1-2): 149–56.. PMID 9373149.

  • Nakashima-Matsushita N, Homma T, Yu S; et al. (1999). “Selective expression of folate receptor beta and its possible role in methotrexate transport in synovial macrophages from patients with rheumatoid arthritis.”. Arthritis Rheum. 42 (8): 1609–16. . PMID 10446858.

  • Strausberg RL, Feingold EA, Grouse LH; et al. (2003). “Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.” . Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899– 903. PMID 12477932.


    MTRR

    • Leclerc D, Wilson A, Dumas R, Gafuik C, Song D, Watkins D,
      Heng HH, Rommens JM, Scherer SW, Rosenblatt DS, Gravel RA
      (Mar 1998).
      “Cloning and mapping of a cDNA for methionine
      synthase reductase, a flavoprotein defective in patients with homocystinuria”
      . Proceedings of the National Academy of Sciences of the United States of America 95 (6): 3059–64. PMID 9501215.

    • “Entrez Gene: MTRR 5-methyltetrahydrofolate-homocysteine methyltransferase reductase”

    • Wilson A, Platt R, Wu Q, Leclerc D, Christensen B,Yang
      H, Gravel RA, Rozen R (Aug 1999).“A common variant in methionine synthase reductase combined with low cobalamin (vitamin B12) increases risk for spina bifida”.Molecular Genetics and Metabolism 67 (4): 317–23.
      PMID 10444342.

    • James SJ, Pogribna M, Pogribny IP, Melnyk S, Hine RJ,
      Gibson JB,Yi P,Tafoya DL, Swenson DH, Wilson VL, Gaylor DW (Oct 1999).“Abnormal folate metabolism and mutation in the methylenetetrahydrofolate reductase gene may be maternal risk factorsforDownsyndrome”.TheAmericanJournalofClinical Nutrition 70 (4): 495–501.
      PMID 10500018.

    • Leclerc D, Odièvre M, Wu Q, Wilson A, Huizenga JJ, Rozen
      R, Scherer SW, Gravel RA (Nov 1999).“Molecular cloning, expression and physical mapping of the human methionine synthase reductase gene”. Gene 240 (1): 75–88.
      PMID 10564814.

    • Doolin MT, Barbaux S, McDonnell M, Hoess K, Whitehead AS, Mitchell LE (Nov 2002). “Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida” . American Journal of Human Genetics 71 (5): 1222–6.. PMID 12375236.

    • Pietrzyk JJ,Bik-Multanowski M,Sanak M,Twardowska M (2003).“Polymorphisms of the 5,10-methylenetetrahydrofolate and the methionine synthase reductase genes as independent risk factors for spina bifida”. Journal of Applied Genetics 44 (1): 111–3. PMID 12590188.

    • Zhu H, Wicker NJ, Shaw GM, Lammer EJ, Hendricks K, Suarez L, Canfield M, Finnell RH (Mar 2003).“Homocysteine remethylation enzyme polymorphisms and increased
      risks for neural tube defects”. Molecular Genetics and Metabolism 78 (3): 216–21.
      PMID 12649067.

    • Brilakis ES, Berger PB, Ballman KV, Rozen R (Jun 2003). “Methylenetetrahydrofolate reductase (MTHFR) 677C>T and methionine synthase reductase (MTRR) 66A>G polymorphisms: association with serum homocysteine and angiographic coronary artery disease in the era of flour products fortified with folic acid”.Atherosclerosis 168 (2): 315–22. doi:10.1016/S0021-9150(03)00098-4. PMID 12801615.

    • Beyer K, Lao JI, Latorre P, Riutort N, Matute B, Fernández- Figueras MT, Mate JL, Ariza A (Jul 2003).“Methionine synthase polymorphism is a risk factor for Alzheimer disease”. NeuroReport 14 (10): 1391–4. doi:10.1097/01. wnr.0000073683.00308.0e . PMID 12876480.

    • Bosco P, Guéant-Rodriguez RM, Anello G, Barone C, Namour F, Caraci F, Romano A, Romano C, Guéant JL (Sep 2003). “Methionine synthase (MTR) 2756 (A --> G) polymorphism, double heterozygosity methionine synthase 2756 AG/ methionine synthase reductase (MTRR) 66 AG, and elevated homocysteinemia are three risk factors for having a child with Down syndrome”. American Journal of Medical Genetics. Part A 121A (3): 219–24. PMID 12923861.

    • Olteanu H, Wolthers KR, Munro AW, Scrutton NS, Banerjee R (Feb 2004).“Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase”. Biochemistry 43(7): 1988–97. PMID 14967039.

    • Vaughn JD, Bailey LB, Shelnutt KP, Dunwoody KM, Maneval DR, Davis SR, Quinlivan EP, Gregory JF,Theriaque DW, Kauwell GP (Nov 2004).“Methionine synthase reductase 66A->G polymorphism is associated with increased plasma homocysteine concentration when combined with the homozygous methylenetetrahydrofolate reductase 677C- >T variant”. The Journal of Nutrition 134 (11): 2985–90. PMID 15514263. Neurotransmitter SNPs


COMT

• Grossman MH, Emanuel BS, Budarf ML (April 1992). “Chromosomal mapping of the human catechol-O-methyltransferase gene to 22q11.1-q11.2”. Genomics 12 (4): 822–5. PMID 1572656.

• Tai CH, Wu RM (February 2002). “Catechol-O-methyltransferase and Parkinson’s disease”. Acta Med. Okayama 56 (1): 1–6. PMID 11873938.

• Axelrod J (August 1957). “O-Methylation of Epinephrine and Other Catechols in vitro and in vivo”.Science 126 (3270): 400– 1. PMID 13467217.

• Ulmanen I, Peränen J, Tenhunen J, Tilgmann C, Karhunen T, Panula
P, Bernasconi L, Aubry JP, Lundström K (1997). “Expression and Intracellular Localization of Catechol O-methyltransferase in Transfected Mammalian Cells”. European Journal of Biochemistry 243 (1–2): 452–9.
PMID 9030772.

• Golan, David E.; Armen H. Tashjian Jr. Principles of pharmacology (3rd ed.). Philadelphia: Wolters Kluwer Health. p. 135. ISBN 1-60831-270-4.

• Stein MB, Fallin MD, Schork NJ, Gelernter J (November
2005). “COMT polymorphisms and anxiety-related personality
traits”. Neuropsychopharmacology 30 (11): 2092–102.
PMID 15956988.

• Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melén K, Julkunen I, Taskinen J (April 1995). “Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description
of the thermolabile variant of the enzyme”. Biochemistry 34 (13): 4202–10.
PMID 7703232.

• Chen J, Lipska BK, Halim N, Ma QD, Matsumoto M, Melhem S, Kolachana BS, Hyde TM, Herman MM, Apud J, Egan MF, Kleinman JE, Weinberger DR (2004). “Functional analysis of genetic variation in catechol-O- methyltransferase (COMT): effects on mRNA, protein, and enzyme activity in postmortem human brain” . American Journal of Human Genetics 75 (5): 807–21. PMID 15457404.

• Bruder GE, Keilp JG, Xu H, Shikhman M, Schori E, Gorman JM, Gilliam TC (December 2005). “Catechol-O-methyltransferase (COMT) genotypes and working memory: associations with differing cognitive operations”. Biol. Psychiatry 58 (11): 901–7. PMID 16043133.

• Robinson S, Goddard L, Dritschel B, Wisley M, Howlin P (2009). “Executive functions in children with autism spectrum disorders”. Brain Cogn. 71 (3): 362–368. . PMID 19628325.

• Diamond et al. (2004). Genetic and neurochemical modulation of prefrontal cognitive functions in children” The American Journal of Psychiatry 161, no. 1: 125-132

• Wichers M, Aguilera M, Kenis G, Krabbendam L, Myin-Germeys I, Jacobs N, Peeters F, Derom C, Vlietinck R, Mengelers R, Delespaul
P, van Os J (December 2008). “The catechol-O-methyl transferase Val158Met polymorphism and experience of reward in the flow of daily life”. Neuropsychopharmacology 33(13): 3030–6.
PMID 17687265.

• Bonifácio MJ, Palma PN, Almeida L, Soares-da-Silva P (2007). “Catechol- O-methyltransferase and its inhibitors in Parkinson’s disease”. CNS Drug Rev 13 (3): 352–79.PMID 17894650.


MAOB

“Entrez Gene: MAOB monoamine oxidase B”.
• Edmondson DE, Binda C, Mattevi A (August 2007).
“Structural insights

into the mechanism of amine oxidation by monoamine oxidases A and

B”. Arch. Biochem. Biophys. 464 (2): 269–76. PMID 17573034.
• Nolen WA, Hoencamp E, Bouvy PF, Haffmans PM (1993). “Reversible

monoamine oxidase-A inhibitors in resistant major depression”. Clin

Neuropharmacol 16 (Suppl 2): S69–76. PMID 8313400.
• Riederer P, Laux G (March 2011).
“MAO-inhibitors in Parkinson’s

Disease”. Exp Neurobiol 20 (1): 1–17. PMID 22110357.
• Saura J, Luque JM, Cesura AM, Da Prada M, Chan-Palay V, Huber

G, Löffler J, Richards JG (September 1994). “Increased monoamine oxidase B activity in plaque-associated astrocytes of Alzheimer brains revealed by quantitative enzyme radioautography”. Neuroscience 62(1): 15–30. PMID 7816197.

• Mallajosyula JK, Chinta SJ, Rajagopalan S, Nicholls DG, Andersen
JK (October 2009).
“Metabolic control analysis in a cellular model of elevated MAO-B: relevance to Parkinson’s disease” . Neurotox Res 16 (3): 186–93. PMID 19526285.

• Nagatsu T, Sawada M (2006). “Molecular mechanism of the relation of monoamine oxidase B and its inhibitors to Parkinson’s disease: possible implications of glial cells”. J. Neural Transm. Suppl. Journal of Neural Transmission. Supplementa 71 (71): 53–65 PMID 17447416.

• Kumar MJ, Andersen JK (August 2004). “Perspectives on MAO-B in aging and neurological disease: where do we go from here?”. Mol. Neurobiol. 30 (1): 77–89. PMID 15247489.

• Shih JC, Chen K (1999). “MAO-A and -B gene knock-out mice exhibit distinctly different behavior”. Neurobiology (Bp) 7 (2): 235–46. PMID 10591056.

• Shih JC, Chen K, Ridd MJ (1999). “Monoamine oxidase: from genes to behavior.” . Annual Review of Neuroscience 22: 197–217.doi:10.1146/ annurev.neuro.22.1.197 . PMC 2844879. PMID 10202537.

• Bortolato M, Godar SC, Davarian S, Chen K, Shih JC
(December 2009).
“Behavioral disinhibition and reduced
anxiety-like behaviors in monoamine oxidase B-deficient
mice.”
. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology 34 (13): 2746–57. doi:10.1038/ npp.2009.118 . PMC 2783894. PMID 19710633.

• Miller GM (January 2011). “The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity” . J. Neurochem. 116 (2): 164–176. doi:10.1111/ j.1471-4159.2010.07109.x . PMC 3005101.PMID 21073468.

• Ukraintseva SV, Arbeev KG, Michalsky AI, Yashin AI (June 2004). “Antiaging treatments have been legally prescribed for approximately thirty years”. Ann. N. Y. Acad. Sci. 1019: 64–9. doi:10.1196/annals.1297.014. PMID 15246996.


GAD1

• Kelly CD, Edwards Y, Johnstone AP, Harfst E, Nógrádi A, Nussey SS, Povey S, Carter ND (1992). “Nucleotide sequence and chromosomal assignment of a cDNA encoding the large isoform of human glutamate decarboxylase”. Ann. Hum. Genet. 56 (Pt 3): 255–65.. PMID 1339255.

• Giorda R, Peakman M, Tan KC, Vergani D, Trucco M (1991). “Glutamic acid decarboxylase expression in islets and brain”. Lancet 338 (8780): 1469–70. PMID 1683463.

• Dirkx R, Thomas A, Li L, Lernmark A, Sherwin RS, De Camilli P, Solimena M (1995). “Targeting of the 67-kDa isoform of glutamic acid decarboxylase to intracellular organelles is mediated by its interaction with the NH2- terminal region of the 65-kDa isoform of glutamic acid decarboxylase”. J. Biol. Chem. 270 (5): 2241–6. PMID 7836456.

• Bu DF, Tobin AJ (1994). “The exon-intron organization of the genes (GAD1 and GAD2) encoding two human glutamate decarboxylases (GAD67
and GAD65) suggests that they derive from a common ancestral GAD”. Genomics 21 (1): 222–8.
PMID 8088791.

• Asada H, Kawamura Y, Maruyama K, Kume H, Ding R, Ji FY, Kanbara N, Kuzume H, Sanbo M, Yagi T, Obata K (1996). “Mice lacking the 65 kDa isoform of glutamic acid decarboxylase (GAD65) maintain normal levels of GAD67 and GABA in their brains but are susceptible to seizures”. Biochem. Biophys. Res. Commun. 229 (3): 891–5. PMID 8954991.

• McHale DP, Mitchell S, Bundey S, Moynihan L, Campbell DA, Woods
CG, Lench NJ, Mueller RF, Markham AF (1999).
“A gene for autosomal recessive symmetrical spastic cerebral palsy maps to chromosome 2q24- 25” .Am. J. Hum. Genet. 64 (2): 526–32. PMID 9973289.

• Demakova EV, Korobov VP, Lemkina LM (2003). “[Determination of gamma-aminobutyric acid concentration and activity of glutamate decarboxylase in blood serum of patients with multiple sclerosis]”. Klin. Lab. Diagn. (4): 15–7. PMID 12774663.


Mitochondrial SNP References


ATP5C1

• Yoshida M, Muneyuki E, Hisabori T (2001). “ATP synthase--a marvellous rotary engine of the cell”. Nat. Rev. Mol. Cell Biol. 2 (9): 669–77. . PMID 11533724.

• Cross RL (2004). “Molecular motors: turning the ATP motor”. Nature 427 (6973): 407–417 . PMID 14749816

• Deloukas P, Earthrowl ME, Grafham DV, et al. (2004). “The DNA sequence and comparative analysis of human chromosome 10”. Nature 429 (6990): 375–81. doi:10.1038/nature02462. PMID 15164054

• Sequence analysis and mapping of a novel human mitochondrial ATP synthase subunit 9 cDNA (ATP5G3). Yan W.L. ... Gusella J.F. (Genomics 1994) PMID 7698763

• The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Gerhard D.S. ... Malek J. (Genome Res. 2004) PMID 15489334

• Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Hillier L.W. ... Wilson R.K. (Nature 2005) PMID 15815621


ATP5G3

• Cross RL (2004). “Molecular motors: turning the ATP motor.”. Nature 427 (6973): 407–8. doi:10.1038/427407b. .

• Dyer MR, Walker JE (1993). “Sequences of members of the human gene family for the c subunit of mitochondrial ATP synthase.” . Biochem. J. 293 (1): 51–64.. PMID 8328972.

• Gerhard DS, Wagner L, Feingold EA; et al. (2004). “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).” . Genome Res. 14 (10B): 2121–7.doi:10.1101/ gr.2596504 . PMC 528928. PMID 15489334

• Sequence analysis and mapping of a novel human mitochondrial ATP synthase subunit 9 cDNA (ATP5G3). Yan W.L. ... Gusella J.F. (Genomics 1994) PMID 7698763

• The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Gerhard D.S. ... Malek J. (Genome Res. 2004) PMID 15489334

• Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Hillier L.W. ... Wilson R.K. (Nature 2005) PMID 15815621


COX5A

A systematic mutation screen of 10 nuclear and 25 mitochondrial candidate genes in 21 patients with cytochrome c oxidase (COX) deficiency shows tRNA(Ser)(UCN) mutations in a subgroup with syndromal encephalopathy. Jaksch, M., Hofmann, S., Kleinle, S., Liechti-Gallati,
S., Pongratz, D.E., Müller-Höcker, J., Jedele, K.B., Meitinger, T., Gerbitz, K.D. J. Med. Genet. (1998) [
Pubmed]

Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Kraytsberg, Y., Kudryavtseva, E., McKee, A.C., Geula, C., Kowall, N.W., Khrapko, K. Nat. Genet. (2006)

Defects in cytochrome oxidase assembly in humans: lessons from yeast. Zee, J.M., Glerum, D.M. Biochem. Cell Biol. (2006)

An mtDNA mutation in the initiation codon of the cytochrome C oxidase subunit II gene results in lower levels of the protein and a mitochondrial encephalomyopathy. Clark, K.M., Taylor, R.W., Johnson, M.A., Chinnery, P.F., Chrzanowska-Lightowlers, Z.M., Andrews, R.M., Nelson, I.P., Wood, N.W., Lamont, P.J., Hanna, M.G., Lightowlers, R.N., Turnbull, D.M. Am. J. Hum. Genet. (1999)

The structure of mammalian cyclooxygenases. Garavito, R.M., Mulichak, A.M. Annual review of biophysics and biomolecular structure. (2003)


COX6C

• Lenka N, Vijayasarathy C, Mullick J, Avadhani NG (1998). “Structural organization and transcription regulation of nuclear genes encoding the mammalian cytochrome c oxidase complex.”. Prog. Nucleic Acid Res. Mol.

  • Biol. 61: 309–44. doi:10.1016/S0079-6603(08)60830-2. PMID 9752724.

  • Ewing RM, Chu P, Elisma F; et al. (2007). “Large-scale mapping of human protein-protein interactions by mass spectrometry.” . Mol. Syst. Biol. 3 (1):

    89. doi:10.1038/msb4100134. PMC 1847948. PMID 17353931.

  • Gerhard DS, Wagner L, Feingold EA; et al. (2004). “The status, quality,

    and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).” . Genome Res. 14 (10B): 2121–7.doi:10.1101/ gr.2596504 . PMC 528928. PMID 15489334.

  • Strausberg RL, Feingold EA, Grouse LH; et al. (2003). “Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.” . Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. PMC 139241. PMID 12477932.

  • Kish SJ, Mastrogiacomo F, Guttman M; et al. (1999). “Decreased brain protein levels of cytochrome oxidase subunits in Alzheimer’s disease and in hereditary spinocerebellar ataxia disorders: a nonspecific change?”. J. Neurochem. 72 (2): 700–7. doi:10.1046/j.1471- 4159.1999.0720700.x . PMID 9930743.

  • Otsuka M, Mizuno Y, Yoshida M; et al. (1989). “Nucleotide sequence of cDNA encoding human cytochrome c oxidase subunit VIc.”. Nucleic Acids Res. 16 (22): 10916. doi:10.1093/nar/16.22.10916. PMC 338951. PMID 2849755. Assignment of the human genes coding for cytochrome c oxidase subunits Va (COX5A), VIc (COX6C) and VIIc (COX7C) to chromosome bands 15q25, 8q22-->q23 and 5q14 and of three pseudogenes (COX5AP1, COX6CP1, COX7CP1) to 14q22, 16p12 and 13q14-->q21 by FISH and radiation hybrid mapping. (PMID: 10072584) Hofmann S. ... Meitinger T. (Cytogenet. Cell Genet. 1998)


    NDUFS7

  • Smeitink J, van den Heuvel L (1999). “Human mitochondrial complex I in health and disease” . Am. J. Hum. Genet. 64 (6): 1505–
    10.
    doi:10.1086/302432. PMC 1377894. PMID 10330338.

  • Loeffen JL, Triepels RH, van den Heuvel LP, et al. (1999). “cDNA of eight nuclear encoded subunits of NADH:ubiquinone oxidoreductase: human complex I cDNA characterization completed”. Biochem. Biophys. Res. Commun. 253 (2): 415–22. doi:10.1006/bbrc.1998.9786. PMID 9878551.

  • Ota T, Suzuki Y, Nishikawa T, et al. (2004). “Complete sequencing and characterization of 21,243 full-length human cDNAs”. Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. PMID 14702039.

  • Ugalde C, Janssen RJ, van den Heuvel LP, et al. (2004). “Differences
    in assembly or stability of complex I and other mitochondrial OXPHOS complexes in inherited complex I deficiency”. Hum. Mol. Genet. 13 (6): 659–67.
    doi:10.1093/hmg/ddh071. PMID 14749350.

  • The subunit composition of the human NADH dehydrogenase obtained by rapid one-step immunopurification. (PMID: 12611891) Murray J. ... Capaldi R.A. (J. Biol. Chem. 2003)


    UQCRC2

    • Hosokawa Y, Suzuki H, Toda H, et al. (1990). “The primary structure
      of the precursor to core protein II, a putative member of mitochondrial processing protease family, of rat mitochondrial cytochrome bc1 complex deduced from cDNA sequence analysis.”. Biochem. Int. 20 (4): 731–7. .

    • Hu WH, Hausmann ON, Yan MS, et al. (2002). “Identification and characterization of a novel Nogo-interacting mitochondrial protein (NIMP).”. J. Neurochem. 81 (1): 36–45. doi:10.1046/j.1471-4159.2002..

    • Strausberg RL, Feingold EA, Grouse LH, et al. (2003). “Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.” . Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. doi:10.1073/pnas.242603899. .

    • Ota T, Suzuki Y, Nishikawa T, et al. (2004). “Complete sequencing and characterization of 21,243 full-length human cDNAs.”. Nat. Genet. 36 (1): 40–5. doi:10.1038/ng1285. .

    • Gerhard DS, Wagner L, Feingold EA, et al. (2004). “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).” . Genome Res. 14 (10B): 2121–7.doi:10.1101/ gr.2596504 ..

    • Rual JF, Venkatesan K, Hao T, et al. (2005). “Towards a proteome-scale map of the human protein-protein interaction network.”. Nature 437 (7062): 1173–8. doi:10.1038/nature04209..

    • Ewing RM, Chu P, Elisma F, et al. (2007). “Large-scale mapping of human protein-protein interactions by mass spectrometry.” . Mol. Syst. Biol. 3 (1): 89. doi:10.1038/msb4100134..

    • “Complementary DNA encoding core protein II of human mitochondrial cytochrome bc1 complex. Substantial diversity in deduced primary structure from its yeast counterpart. Hosokawa Y., Suzuki H., Toda H., Nishikimi M., Ozawa T. J. Biol. Chem. 264:13483-13488(1989)


      Detoxification SNP References

      CBS699

    • Meier M, Janosik M, Kery V, Kraus JP, Burkhard P (August
      2001).
      “Structure of human cystathionine beta-synthase: a unique pyridoxal 5’-phosphate-dependent heme protein” . The EMBO Journal 20 (15): 3910–6. PMID 11483494.

    • “Entrez Gene: CBS cystathionine-beta-synthase”.

    • Janosík M, Kery V, Gaustadnes M, Maclean KN, Kraus JP (September

      2001). “Regulation of human cystathionine beta-synthase by S-adenosyl- L-methionine: evidence for two catalytically active conformations involving an autoinhibitory domain in the C-terminal region”.Biochemistry 40 (35): 10625–33. doi:10.1021/bi010711p. PMID 11524006.

    • Banerjee R, Zou CG (January 2005). “Redox regulation and reaction mechanism of human cystathionine-beta-synthase: a PLP-dependent hemesensor protein”. Archives of Biochemistry and Biophysics 433 (1): 144–56. PMID 15581573.

    • Yamanishi M, Kabil O, Sen S, Banerjee R (December 2006). “Structural insights into pathogenic mutations in heme-dependent cystathionine- beta-synthase”. Journal of Inorganic Biochemistry 100 (12): 1988–95. PMID 17069888.

• Jhee KH, Kruger WD (2005). “The role of cystathionine beta-synthase

in homocysteine metabolism”. Antioxidants & Redox Signaling7 (5–6):813–22. doi:10.1089/ars.2005.7.813. PMID 15890029.

• Ignoul S, Eggermont J (December 2005). “CBS domains: structure, function, and pathology in human proteins”. American Journal of Physiology. Cell Physiology 289 (6): C1369–78. doi:10.1152/ ajpcell.00282.2005 . PMID 16275737.

• Pranik M, Weeks CL, Lahaye D, Kabil O, Taoka S, Nielsen SB, Groves JT, Banerjee R, Spiro TG (May 2006). “Dynamics of carbon monoxide binding to cystathionine beta-synthase” . The Journal of Biological Chemistry 281 (19): 13433–8. PMID 16505479.


GSTP1

• Strange RC, Fryer AA (1999). “The glutathione S-transferases: influence of polymorphism on cancer susceptibility”. IARC Sci. Publ. (148): 231–49. PMID 10493261.

• Kellen E, Hemelt M, Broberg K, Golka K, Kristensen VN, Hung RJ, Matullo G, Mittal RD, Porru S, Povey A, Schulz WA, Shen J, Buntinx F, Zeegers MP, Taioli E (2007). “Pooled analysis and meta-analysis of the glutathione S-transferase P1 Ile 105Val polymorphism and bladder cancer: a HuGE- GSEC review”. Am. J. Epidemiol. 165 (11): 1221–30. doi:10.1093/aje/ kwm003 . PMID 17404387.

• Sekine I, Minna JD, Nishio K, Tamura T, Saijo N (2006). “A literature review of molecular markers predictive of clinical response to cytotoxic chemotherapy in patients with lung cancer”. J Thorac Oncol 1 (1): 31–7. doi:10.1097/01243894-200601000-00008. PMID 17409824.

• Buch SC, Notani PN, Bhisey RA (2002). “Polymorphism at GSTM1, GSTM3 and GSTT1 gene loci and susceptibility to oral cancer in an Indian population.”. Carcinogenesis 23 (5): 803–7. PMID 12016153

• Gerhard DS, Wagner L, Feingold EA, et al. (2004). “The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).” . Genome Res. 14 (10B): 2121–7.PMID 15489334


SOD2

  • “Entrez Gene: SOD2 superoxide dismutase 2, mitochondrial”.

  • Becuwe P, Ennen M, Klotz R, Barbieux C, Grandemange S (Dec 2014).

    “Manganese superoxide dismutase in breast cancer: from molecular mechanisms of gene regulation to biological and clinical significance”. Free Radical Biology & Medicine77: 139/51. PMID 25224035.

  • Perry JJ, Hearn AS, Cabelli DE, Nick HS, Tainer JA, Silverman DN (Apr 2009). “Contribution of human manganese superoxide dismutase tyrosine 34 to structure and catalysis”. Biochemistry 48 (15): 3417–24. PMID 19265433.

  • Danial, NN; Korsmeyer, SJ (23 January 2004). “Cell death: critical control points.”. Cell116 (2): 205–19. PMID 14744432.

  • Kerr JF, Wyllie AH, Currie AR (Aug 1972). “Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics” . British Journal of Cancer 26 (4): 239–57. PMID 4561027.

  • Murray CJ, Lopez AD (May 1997). “Alternative projections of mortality and disability by cause 1990-2020: Global Burden of Disease
    Study”. Lancet 349 (9064): 1498–504.
    PMID 9167458.

  • Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H (Aug 2007). “Trends in oxidative aging theories”. Free Radical Biology & Medicine 43 (4): 477–503. PMID 17640558.

  • Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang TT, Nelson J, Strong R, Richardson A (Dec 2003). “Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging”. Physiological Genomics 16 (1): 29–37. PMID 14679299.


    NAT2

  • Vatsis KP, Weber WW, Bell DA, Dupret JM, Evans DA, Grant DM, Hein DW, Lin HJ, Meyer UA, Relling MV (February 1995). “Nomenclature for N-acetyltransferases”. Pharmacogenetics 5 (1): 1–17. PMID 7773298.

  • “Entrez Gene: NAT2 N-acetyltransferase 2 (arylamine N-acetyltransferase)”.

  • “NAT2PRED: a computational predictor of the human

    N-AcetylTransferase-2 (NAT2) acetylator phenotype”. State University of

    New York – Albany. Retrieved 2009-04-30.

  • Agúndez JA (2008). “Polymorphisms of human N-acetyltransferases and

    cancer risk”. Curr. Drug Metab. 9 (6): 520–31. PMID 18680472.

  • Windmill KF, McKinnon RA, Zhu X, Gaedigk A, Grant DM,

    McManus ME (1997).“The role of xenobiotic metabolizing enzymes in arylamine toxicity and carcinogenesis: functional and localization studies”. Mutat. Res.376 (1-2): 153–
    60.
    PMID 9202751.

  • Ochs-Balcom HM, Wiesner G, Elston RC (2007).“A meta- analysis of the association of N-acetyltransferase 2 gene (NAT2) variants with breast cancer”. Am. J. Epidemiol. 166 (3): 246–54. PMID 17535831.


    Inflammatory SNPs

    DAO

    Localization of D-amino acid oxidase on the cell surface of human polymorphonuclear leukocytes. Robinson, J.M., Briggs, R.T., Karnovsky, M.J. J. Cell Biol. (1978) [ Pubmed]

    Molecular cloning and sequence analysis of cDNA encoding human kidney D-amino acid oxidase. Momoi, K., Fukui, K., Watanabe, F., Miyake, Y. FEBS Lett. (1988) [ Pubmed]

    Assignment of D-amino-acid oxidase gene to a human and a mouse chromosome. Konno, R. Amino Acids (2001) [Pubmed]

    A cell-based ultra-high-throughput screening assay for identifying inhibitors of D-amino acid oxidase. Brandish, P.E., Chiu, C.S., Schneeweis, J., Brandon, N.J., Leech, C.L., Kornienko, O., Scolnick, E.M., Strulovici, B., Zheng, W. Journal of biomolecular screening : the official journal of the Society for Biomolecular Screening. (2006) [ Pubmed]

Molecular cloning and chromosomal localization of a human gene encoding D-amino-acid oxidase. Fukui, K., Miyake, Y. J. Biol. Chem. (1992) [ Pubmed]


FUT2

Ball SP,Tongue N, Gibaud A, Le Pendu J, Mollicone R, Gerard G, Oriol R (Feb 1992).“The human chromosome 19 linkage group FUT1 (H), FUT2 (SE), LE, LU, PEPD, C3, APOC2, D19S7 and D19S9”. Ann Hum Genet 55 (Pt 3): 225–33. PMID 1763885.

“Entrez Gene: FUT2 fucosyltransferase 2 (secretor status included)”. • Reguigne-Arnould I; Couillin P; Mollicone R; et al. (1995). “Relative

positions of two clusters of human alpha-L-fucosyltransferases in 19q (FUT1-FUT2) and 19p (FUT6-FUT3-FUT5) within the microsatellite genetic map of chromosome 19”. Cytogenet. Cell Genet. 71 (2): 158–62. doi:10.1159/000134098. PMID 7656588.

• Koda Y, Soejima M, Wang B, Kimura H (1997). “Structure and expression of the gene encoding secretor-type galactoside 2-alpha-L- fucosyltransferase (FUT2)”. Eur. J. Biochem. 246 (3): 750–5.

• Strausberg RL; Feingold EA; Grouse LH; et al. (2003). “Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences” . Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. PMID 12477932.

• Kimura K; Wakamatsu A; Suzuki Y; et al. (2006). “Diversification of transcriptional modulation: large-scale identification and characterization of putative alternative promoters of human genes” . Genome Res. 16 (1): 55–65. PMID 16344560.


HLADQ1

• Schmidt H, Williamson D, Ashley-Koch A (2007). “HLA-DR15 haplotype and multiple sclerosis: a HuGE review.”. Am. J. Epidemiol. 165 (10): 1097–109. doi:10.1093/aje/kwk118. PMID 17329717.

• Marsh SG, Bodmer JG (1993). “HLA class II nucleotide sequences, 1992.”. Tissue Antigens 40 (5): 229–43. PMID 1362295.

• Todd JA, Fukui Y, Kitagawa T, Sasazuki T (1990). “The A3 allele of the HLA-DQA1 locus is associated with susceptibility to type 1 diabetes in Japanese.” . Proc. Natl. Acad. Sci. U.S.A. 87 (3): 1094–8. . PMID 2300572.

• Kao HT, Gregersen PK, Tang JC, et al. (1989). “Molecular analysis of the HLA class II genes in two DRw6-related haplotypes, DRw13 DQw1 and DRw14 DQw3.”. J. Immunol. 142 (5): 1743–7. PMID 2493052.

• Jonsson AK, Hyldig-Nielsen JJ, Servenius B, et al. (1987). “Class II genes of the human major histocompatibility complex. Comparisons of the DQ and DX alpha and beta genes”. J. Biol. Chem. 262 (18): 8767–77. PMID 3036828.

• Liu CP, Bach FH, Wu SK (1988). “Molecular studies of a rare DR2/ LD-5a/DQw3 HLA class II haplotype. Multiple genetic mechanisms in the generation of polymorphic HLA class II genes”. J. Immunol. 140 (10): 3631–9. PMID 3129499.

• Horn GT, Bugawan TL, Long CM, et al. (1988). “Sequence analysis of HLA class II genes from insulin-dependent diabetic individuals”. Hum. Immunol. 21 (4): 249–63. PMID 3372263.

• Schiffenbauer J, Didier DK, Klearman M, et al. (1987). “Complete sequence of the HLA DQ alpha and DQ beta cDNA from a DR5/DQw3 cell line”. J. Immunol. 139 (1): 228–33. PMID 3584986.


HLADQA2 A combination of HLA-DQ beta Asp57-negative and HLA DQ alpha Arg52 confers susceptibility to insulin-dependent diabetes mellitus. Khalil, I., d’Auriol, L., Gobet, M., Morin, L., Lepage, V., Deschamps, I., Park, M.S., Degos, L., Galibert, F., Hors, J. J. Clin. Invest. (1990)

Trans-encoded DQ alpha beta heterodimers confer susceptibility to myasthenia gravis disease. Khalil, I., Berrih-Aknin, S., Lepage, V., Loste, M.N., Gajdos, P., Hors, J., Charron, D., Degos, L. C. R. Acad. Sci. III, Sci. Vie (1993)

Celiac disease is associated with an extended HLA-DR3 haplotype which includes HLA-DPw1. Hall, M.A., Lanchbury, J.S., Bolsover, W.J., Welsh, K.I., Ciclitira, P.J. Hum. Immunol. (1990)
Polymorphic DQ alpha and DQ beta interactions dictate HLA class II determinants of allo-recognition. Kwok, W.W., Mickelson, E., Masewicz, S., Milner, E.C., Hansen, J., Nepom, G.T. J. Exp. Med. (1990)

Evidence for a primary association of celiac disease to a particular HLA-DQ alpha/beta heterodimer. Sollid, L.M., Markussen, G., Ek, J., Gjerde, H., Vartdal, F., Thorsby, E. J. Exp. Med. (1989)
HLA-DQA and DQB alleles contribute to susceptibility to insulin-dependent diabetes mellitus. Wang, H., He, R. Chin. Med. Sci. J. (1993)

A family study confirms that the HLA-DP associations with celiac disease are the result of an extended HLA-DR3 haplotype. Bolsover, W.J., Hall, M.A., Vaughan, R.W., Welsh, K.I., Ciclitira, P.J. Hum. Immunol. (1991) The cryptic HLA-DQA2 (“DX alpha”) gene is expressed in human B cell lines. Yu, L.P., Sheehy, M.J. J. Immunol. (1991)

HLA class II-associated genetic susceptibility in multiple sclerosis: a critical evaluation. Olerup, O., Hillert, J. Tissue Antigens (1991)
Entrez Gene: HLA-DQA2 major histocompatibility complex, class II, DQ alpha 2”


VDRTaq

• Lisse TS, Chun RF, Rieger S, Adams JS, Hewison M (June 2013). “Vitamin D activation of functionally distinct regulatory miRNAs in primary human osteoblasts”. J Bone Miner Res. 28 (6): 1478–14788. PMID 23362149.

• Fleet JC, Schoch RD (August 2010). “Molecular Mechanisms for Regulation of Intestinal Calcium Absorption by Vitamin D and Other Factors” . Crit Rev Clin Lab Sci 47 (4): 181–195. PMID 21182397.

• Germain P, Staels B, Dacquet C, Spedding M, Laudet V (December 2006). “Overview of nomenclature of nuclear receptors”. Pharmacol. Rev. 58 (4): 685–704.. PMID 17132848.

• Adorini L, Daniel KC, Penna G (2006). “Vitamin D receptor agonists, cancer and the immune system: an intricate relationship”. Curr Top Med Chem 6 (12): 1297–301. doi:10.2174/156802606777864890. PMID 16848743.

  • “Entrez Gene: VDR vitamin D (1,25- dihydroxyvitamin D3) receptor”.

  • Jump up^ Luderer HF, Demay MB (July 2010). “The vitamin D receptor,

    the skin and stem cells”.J. Steroid Biochem. Mol. Biol. 121 (1–2): 314–6..

    PMID 20138991.

  • Tagami T, Lutz WH, Kumar R, Jameson JL (December 1998). “The

    interaction of the vitamin D receptor with nuclear receptor corepressors and coactivators”. Biochem. Biophys. Res. Commun. 253 (2):
    358–63. .
    PMID 9878542.

  • Herdick M, Steinmeyer A, Carlberg C (June 2000). “Antagonistic action of a 25-carboxylic ester analogue of 1alpha, 25-dihydroxy vitamin D3 is mediated by a lack of ligand-induced vitamin D receptor interaction with coactivators”. J. Biol. Chem. 275 (22): 16506–12. PMID 10748178.

  • Baudino TA, Kraichely DM, Jefcoat SC, Winchester SK, Partridge NC, MacDonald PN (June 1998). “Isolation and characterization of a novel coactivator protein, NCoA-62, involved in vitamin D-mediated transcription”. J. Biol. Chem. 273 (26): 16434–41. PMID 9632709.


    NOS2

    • Linkage and association with the NOS2A locus on chromosome 17q11 in multiple sclerosis. Barcellos, L.F., Begovich, A.B., Reynolds, R.L., Caillier, S.J., Brassat, D., Schmidt, S., Grams, S.E., Walker, K., Steiner, L.L., Cree, B.A., Stillman, A., Lincoln, R.R., Pericak-Vance, M.A., Haines, J.L., Erlich, H.A., Hauser, S.L., Oksenberg, J.R. Ann. Neurol. (2004) [ Pubmed]

    • Association of a functional inducible nitric oxide synthase promoter variant with susceptibility to biopsy-proven giant cell arteritis. Gonzalez-Gay, M.A., Oliver, J., Sanchez, E., Garcia-Porrua, C., Paco, L., Lopez-Nevot, M.A., Ollier, W.E., Martin, J. J. Rheumatol. (2005) [ Pubmed]

    • Nitric oxide synthase gene polymorphisms in Alzheimer’s disease and dementia with Lewy bodies. Singleton, A.B., Gibson, A.M., McKeith, I.G., Ballard, C.G., Edwardson, J.A., Morris, C.M. Neurosci. Lett. (2001) [ Pubmed]

Nitric oxide and macrophage function. MacMicking, J., Xie, Q.W., Nathan, C. Annu. Rev. Immunol. (1997) [ Pubmed]

Nitric oxide in health and disease of the respiratory system. Ricciardolo, F.L., Sterk, P.J., Gaston, B., Folkerts, G. Physiol. Rev. (2004) [ Pubmed]

Free radicals in the physiological control of cell function. Dröge, W. Physiol. Rev. (2002) [ Pubmed]

Bidirectional regulation of osteoclast function by nitric oxide synthase isoforms. Brandi, M.L., Hukkanen, M., Umeda, T., Moradi-Bidhendi, N., Bianchi, S., Gross, S.S., Polak, J.M., MacIntyre, I. Proc. Natl. Acad. Sci. U.S.A. (1995)[ Pubmed]

Role of nitric oxide in Sjögren’s syndrome. Konttinen, Y.T., Platts, L.A., Tuominen, S.,

Genetic variation in immunoregulatory pathways and atopic phenotypes in infancy. Hoffjan, S., Ostrovnaja, I., Nicolae, D., Newman, D.L., Nicolae, R., Gangnon, R., Steiner, L., Walker, K., Reynolds, R., Greene, D., Mirel, D., Gern, J.E., Lemanske, R.F., Ober, C. J. Allergy Clin. Immunol. (2004) [ Pubmed]

Regulation of nitric oxide synthesis by proinflammatory cytokines in human umbilical vein endothelial cells. Elevations in tetrahydrobiopterin levels enhance endothelial nitric oxide synthase specific
activity.
Rosenkranz-Weiss, P., Sessa, W.C., Milstien, S., Kaufman, S., Watson, C.A., Pober, J.S. J. Clin. Invest. (1994) [ Pubmed]

Cross-talk between cyclooxygenase and nitric oxide pathways: prostaglandin E2 negatively modulates induction of nitric oxide synthase by interleukin 1. Tetsuka, T., Daphna-Iken, D., Srivastava, S.K., Baier, L.D., DuMaine, J., Morrison, A.R. Proc. Natl. Acad. Sci. U.S.A. (1994) [ Pubmed]

Molecular cloning and expression of inducible nitric oxide synthase from

human hepatocytes. Geller, D.A., Lowenstein, C.J., Shapiro, R.A., Nussler, A.K., Di Silvio, M., Wang, S.C., Nakayama, D.K., Simmons, R.L., Snyder, S.H., Billiar, T.R. Proc. Natl. Acad. Sci. U.S.A. (1993) [ Pubmed]

Role of interferon regulatory factor 1 in induction of nitric oxide synthase. Martin, E., Nathan, C., Xie, Q.W. J. Exp. Med. (1994) [Pubmed]

Physiology and pathophysiology of nitric oxide. Ignarro, L.J. Kidney Int. Suppl. (1996) [ Pubmed]

Regulation of the mammalian heart function by nitric oxide. Massion, P.B., Pelat, M., Belge, C., Balligand, J.L. Comp. Biochem. Physiol., Part A Mol. Integr. Physiol. (2005) [ Pubmed]

Association of elevated glial expression of interleukin-1beta with improved survival in patients with glioblastomas multiforme. Cuny, E., Loiseau, H., Penchet, G., Ellie, E., Arsaut, J., Vital, A., Vincendeau, P., Demotes- Mainard, J. J. Neurosurg. (2002) [ Pubmed]

Platelet phagocytosis and processing of beta-amyloid precursor protein
as a mechanism of macrophage activation in atherosclerosis.
De Meyer, G.R., De Cleen, D.M., Cooper, S., Knaapen, M.W., Jans, D.M., Martinet, W., Herman, A.G., Bult, H., Kockx, M.M. Circ. Res. (2002) [ Pubmed]

Modulation of prostaglandin biosynthesis by nitric oxide and nitric oxide donors. Mollace, V., Muscoli, C., Masini, E., Cuzzocrea, S., Salvemini,
D. Pharmacol. Rev. (2005) [
Pubmed]

Expression of type II nitric oxide synthase in primary human astrocytes and microglia: role of IL-1beta and IL-1 receptor antagonist. Liu, J., Zhao, M.L., Brosnan, C.F., Lee, S.C. J. Immunol. (1996) [ Pubmed]


PubMed comprises more than 24 million citations for biomedical literature from MEDLINE, life science journals, and online books.

Citations may include links to full-text content from PubMed Central and publisher web sites.

Search for biomedical literature by clicking on the link: Pubmed Scientific Papers and Articles